Электрические схемы бесплатно. ПОЛУАВТОМАТ ЗАЩИТЫ РАДИОАППАРАТУРЫ ОТ "ПЕРЕПАДОВ"

 






ПОЛУАВТОМАТ ЗАЩИТЫ РАДИОАППАРАТУРЫ ОТ "ПЕРЕПАДОВ" НАПРЯЖЕНИЯ СЕТИ

Категория: Электропитание

Электропитание ПОЛУАВТОМАТ ЗАЩИТЫ РАДИОАППАРАТУРЫ ОТ "ПЕРЕПАДОВ" НАПРЯЖЕНИЯ СЕТИ

Защита бытовой радиоаппаратуры от "скачков" и резких отклонений сетевого напряжения от нормы для многих районов нашей страны остается проблемой с непредсказуемыми последствиями. Автор статьи анализирует ситуацию и делится личным опытом практического решения этой проблемы.
Предлагаемое устройство защищает радиоаппаратуру быстрым отключением от питающей сети при изменении ее напряжения более допустимых пределов. Оно актуально, прежде всего, вблизи воздушных линий электропередачи, где вероятность замыканий проводов, например, при сильных порывах ветра, велика. Особенно опасно замыкание одного из фазных проводов на "нулевой". При этом напряжение в сети повышается до 380 В. Обычно в таких случаях происходит разрыв оксидных конденсаторов блока питания и вытекание электролита, что пагубно сказывается на работе того или иного радиоаппарата.
Снижение же напряжения сети до 160 В также опасно, в частности для импульсных блоков питания. В таких случаях они работают при длительных токовых нагрузках через силовой транзистор, что может стать причиной выхода его из строя из-за перегрева.

Схема ПОЛУАВТОМАТ ЗАЩИТЫ РАДИОАППАРАТУРЫ ОТ
ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ
=ПОЛУАВТОМАТ ЗАЩИТЫ РАДИОАППАРАТУРЫ ОТ ПЕРЕПАДОВ НАПРЯЖЕНИЯ СЕТИ

Решать описанные проблемы мне помогает полуавтомат, схема которого приведена на рис.
1. От подобного устройства, описанного в статье И. Нечаева "Автомат защиты сетевой аппаратуры от "скачков" напряжения" ("Радио", 1996, № 10, с. 48,49), он отличается в основном лишь тем, что при "скачках" напряжения отключает нагрузку от сети, и повторное его включение быть может только после нажатия на пусковую кнопку SB1. В ранее же описанном автомате при "гуляний" напряжения сети нагрузка питается прерывисто - а это очень не благоприятный режим работы для любой радиоаппаратуры, в особенности ПЭВМ и телевизоров.
Основой предлагаемого полуавтомата служит мощное электромагнитное реле К1. Для питания его обмотки постоянным током применен выпрямительный MOCTVD1-VD4, подключенный к сети через гасящие конденсаторы С1 и С2. Включают устройство кратковременным нажатием на кнопку SB1. При этом реле К1 срабатывает и его замыкающиеся контакты К 1.1 блокируют контакты пусковой кнопки. Конденсатор С1 обеспечивает необходимый пусковой ток реле при включении. В рабочем режиме реле удерживается током, текущим через конденсатор С2, до напряжения сети не ниже 160 В. При налаживании устройства емкость конденсатора С2 (а иногда и конденсатора С1) приходится подбирать для каждого типа реле индивидуально.
При повышении напряжения сети до 240 В открываются стабилитроны VD7 и VD8. Одновременно срабатывает оп-трон U1 и открывается тринистор VS1 .блокирует цепь питания обмотки реле К1. В результате реле отпускает и его размыкающиеся контакты К1.1 отключают нагрузку устройства от питающей сети переменного тока.
Конденсатор СЗ, шунтирующий резистор R3 в цепи менеджмента тринистором VS1, предотвращает срабатывание защиты от импульсных помех. Резисторы R1, R2 ограничивают броски тока через контакты пусковой кнопки SB1, одновременно являясь "предохранителями" в случае пробоя конденсатора С1 или С2.
Диод VD5 улучшает быстродействие устройства, которое определяется в основном типом примененного реле и составляет доли секунды. Время отпускания реле РЭНЗЗ, использованного в описываемом устройстве, не превышает 4 мс, чего совершенно довольно для надежного срабатывания защиты. Резистор R5 сдерживает ток, текущий через светодиод оптрона U1. Подбором его (в пределах 8...25 кОм) можно регулировать в небольших значениях (5... 10 В) порог срабатывания защиты по превышению входного напряжения.
Конструктивно полуавтомат выполнен в виде переносного удлинителя. На его лицевой стенке-крышке установлены сетевая розетка Х2, кнопочный выключатель SB1 (КМ2-1 или П2Кбез фиксации) и индикатор VL1. Электромагнитное реле (РЭНЗЗ), тринистор VS1 и все другие детали смонтированы на печатной плате из одностороннего фольги-рованного материала, которая размещена в пластмассовом корпусе.
Реле К1 может быть любого типа, на рабочее напряжение 12...60 В, а его контакты рассчитаны на ток не менее 2...3 А при напряжении сети 220 В. При этом соответственно должно быть и номинальное напряжение конденсатора С4.
Конденсаторы С1 и С2 - К73, МБМ, МБГО на номинальное напряжение не менее 350 В (С2 лучше на 400 В). Стабилитроны VD7 и VD8 заменимы на похожие, суммарное напряжение стабилизации которых может быть от 310 до 340 В при токе 10... 12 мА. При меньшем суммарном напряжении стабилизации этих приборов (250...300 В) резистор R5 должен быть сопротивлением 30...47 кОм и большей рассеиваемой мощности. В этом случае появится вероятность увеличения нестабильности порога срабатывания защиты.
Диодный оптрон АОД101А (U1) допустимо заместить транзисторным серии АОТ110 или АОТ127, соединив резистор R4 с эмиттером фототранзистора, анод тринистора VS1 - с выводом его коллектора, а между базой и эмиттером установить резистор сопротивлением 1 МОм. При этом и тринистор может быть с большим током менеджмента, например, серии КУ201 или КУ202.
Налаживание устройства сводится в основном к подбору конденсаторов С2 и С1. Подбирая первый из них, добиваются отключения устройства при снижении напряжения сети до 160...170 В, а второй - надежного включения пусковой кнопкой SB1. Не исключен и подбор резистора R5 - для обеспечения надежного срабатывания системы защиты при напряжении сети, превышающим 240...250 В. При этом не следует забрасывать о мерах электробезопасности - ведь все элементы устройства гальванически связаны с электросетью повышенной опасности.
В заключение несколько практических советов, связанных с возможными изменениями в самом устройстве защиты. Если возникнут трудности с подбором высоковольтных стабилитронов VD7 и VD8, то быть может применение одного стабилитрона КС533А с дополнительным транзистором КТ940А, как показано на рис. 2,а. Переменным резистором R8 устанавливают напряжение порога срабатывания системы защиты.


Схема ПОЛУАВТОМАТ ЗАЩИТЫ РАДИОАППАРАТУРЫ ОТ
ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ
=ПОЛУАВТОМАТ ЗАЩИТЫ РАДИОАППАРАТУРЫ ОТ ПЕРЕПАДОВ НАПРЯЖЕНИЯ СЕТИ

Однако ее надежность при этом несколько снизится, так как транзистор VT1 может "уходить на обрыв" и устройство не отключит нагрузку в случае превышения входного переменного напряжения. Стабилитроны же, как правило, выходят из строя на "замыкание", и это приводит лишь к отключению нагрузки.
Устройство удастся упростить, если заместить тринистор VS1 и оптрон U1 оп-тотиристором соответствующей мощности - с выходным импульсным током не менее 1 А, например, серии АОУ160. Полуавтомат с таким оптроном должен надежно блокировать по питанию обмотку реле К1 быстрой разрядкой конденсатора С4. Наиболее распространенный оптрон серии АОУ103 выдерживает импульсный ток значением до 0,5 А, которого может оказаться недостаточно для надежной работы устройства.
Вообще же оптрон можно заместить маломощным импульсным трансформатором. Подойдет, например, согласующий трансформатор усилителя 34 переносного транзисторного радиоприемника или подобный, обмотки которого содержат по 150...300 витков провода ПЭВ-2 0,15...0,3. Обмотку с меньшим числом витков подключают к цепи менеджмента тринистором VS1 (рис. 3,6), а обмотку с большим числом витков - вместо излучающего диода оптрона U1. Резисторы R3 и R4 в этом случае из устройства удаляют.
Длительная эксплуатация нескольких полуавтоматов, в том числе с внесенными изменениями, показала их надежную работу.
От редакции.
Для надежной работы устройства в качестве SB 1 следует установить кнопку, рассчитанную на полный пусковой ток защищаемого устройства. В цепь анода тиристора VS1 желательно установить ограничительный резистор сопротивлением порядка 10 Ом, он предохранит тиристор от возможного пробоя разрядным током конденсатора С4.
А. ЗЕЛЕНИН, г. Карталы Челябинской обл.






Похожие схемы:

УЗЕЛ ЗАЩИТЫ РАДИОАППАРАТУРЫ
УЗЕЛ ЗАЩИТЫ РАДИОАППАРАТУРЫ
Электропитание УЗЕЛ ЗАЩИТЫ РАДИОАППАРАТУРЫ Предлагаемая схема обезопасит радиоаппаратуру например радиостанцию или магнитолу, от выхода и: строя при случайной переполюсовке или повышении напряжения питания (то нередко бывает при неисправности генератора в автомобиле). Схема работает следующим образом. При правильной полярности и номинальном напряжении диод VD1 и ти-ристор VS1 закрыты, и ток через предохранитель FU1 поступает на выход устройства. Если полярность обратная, диод


Стабилизированный блок питания 59 В 500 мА с защитой на реле
Стабилизированный блок питания 59 В 500 мА с защитой на реле
Многие радиолюбители изготовляют блоки питания (БП) с электронной системой защиты от перегрузок и короткого замыкания. Эти схемы немного сложноваты и не вечно работают стабильно. По моему мнению, существенно проще и лучше системы БП на электромагнитных реле. Ниже дается описание БП с такой системой защиты. БП имеет индикацию включения и перегрузки на светодиодах. Данный БП можно использовать для питания любых радиотехнических устройств с напряжением питания 4,5-6 В, 9 В и током потребления до 500 мА. Его очень удобно использовать для


УСТРОЙСТВО ЗАЩИТЫ ОТ ПЕРЕНАПРЯЖЕНИЯ
УСТРОЙСТВО ЗАЩИТЫ ОТ ПЕРЕНАПРЯЖЕНИЯ
Бытовая электроника УСТРОЙСТВО ЗАЩИТЫ ОТ ПЕРЕНАПРЯЖЕНИЯ А.ПАКАЛО, 340074, Украина, г.Донецк-74, ул. Волго-Донкая, 7"г" — 5, тел.22-26-93. Предлагаю простое устройство, которое в случае аварии электросети защитит телевизор, видеомагнитофон, холодильник и т.д. от перенапряжения. Как правило, при аварии в сети присутствует напряжение 380 В (действующее значение), приносящее все неприятности. При подобной ситуации устройство защиты от перенапряжения срабатывает, создавая короткое замыкание. "Выбитые"


Устройство защиты
Устройство защиты
Электропитание Устройство защиты Устройство (патент DL-WR 82992), принципиальная схема которого приведена на рисунке, может использоваться и стабилизированных выпрямителях последовательного типа для защиты нагрузки от недопустимо высокого выходного напряжения. В нормальных условиях транзистор Т1 работает в режиме, когда напряжение между его коллектором и эмиттером небольшое и на транзисторе рассеивается небольшая мощность (ток базы определяется резистором R1). Сопротивление стабилитрона Д2 в этом случае


Автоматическое отключение радиоаппаратуры
Автоматическое отключение радиоаппаратуры
Данное устройство (рис.1) автоматически отключает нагрузку (магнитофон, проигрыватель CD, усилитель мощности и т.п.) по окончанию фонограммы или компакт-диска при пропадании сигнала на входе НЧ XS1. При нажатии кнопки SB1 напряжение сети подводится к трансформатору Т1 (рис.2). Выпрямленное напряжение питания +15 В подается на устройство. Одновременно при замыкании контактов SB1.1 происходит зарядка конденсатора С4 через резистор R9. На входах 5 и 6 элемента DD1.2 - логическая "1", на выходе 11 элемента DD1.3 - также логическая "1".


Об источниках радиопомех в системе зажигания
Об источниках радиопомех в системе зажигания
Рассмотрены источники радиопомех от системы зажигания, показаны способы подавления помех, системы зажигания, рекомендован фильтр по цепи питания радиоаппаратуры. В системе зажигания двигателя внутреннего сгорания на бензине четыре основных источника электромагнитных колебаний: первичный контур, контур контакта прерывателя, цепь распределителя и свеча зажигания. Последние три относятся к высокочастотным источникам электромагнитного излучения, попадающих в диапазон радиовещания. Для наглядности рассмотрим т.н. "классическую" систему





Оставить комментарий