Электрические схемы бесплатно. НОВЫЙ СПОСОБ ФОРМИРОВАНИЯ SSB СИГНАЛА

 






НОВЫЙ СПОСОБ ФОРМИРОВАНИЯ SSB СИГНАЛА

Категория: Радиопередатчики

Радиопередатчики, радиостанции НОВЫЙ СПОСОБ ФОРМИРОВАНИЯ SSB СИГНАЛА В. ПОЛЯКОВ (RA3AAE) г. Москва
В радиолюбительской связной аппаратуре обширно используются в основном два способа формирования однополосного сигнала - фильтровый и фазовый [1]. Третий - фазофильтровый пока не получил распространения. Все они относятся к "прямым" методам, которые характеризуются тем, что звуковой сигнал после ряда частотных преобразований превращается в однополосный.
Особое место занимает "синтетический" способ формирования SSB сигнала, предложенный М. Верзуновым [2]. Его суть состоит в следующем. Из исходного звукового формируют SSB сигнал (любым способом) на сравнительно низкой вспомогательной частоте, где легко подавить несущую и ненужную боковую полосу. Сформированный сигнал детектируют двумя детекторами - амплитудным и частотным, на выходе которых выделяются напряжения, пропорциональные мгновенной амплитуде и мгновенной частоте SSB сигнала. Задающий генератор передатчика, возбуждаемый на рабочей частоте, модулируется по частоте напряжением с выхода частотного детектора. В выходном каскаде передатчика излучаемый сигнал модулируется ещё и по амплитуде напряжением с выхода амплитудного детектора. При правильно подобранных коэффициентах модуляции на рабочей частоте образуется и поступает в антенну обычный SSB сигнал.
К достоинствам "синтетического" метода следует отнести вероятность формирования SSB сигнала на сколь угодно высокой частоте и малое содержание побочных продуктов (комбинационных частот) в выходном сигнале. Кроме того, большинство ВЧ каскадов передатчика может работать в режиме класса С с высоким КПД. К недостаткам способа следует отнести недопустимость относительного фазового сдвига управляющих сигналов в каналах модуляции частоты и амплитуды и необходимость довольно точно воспроизводить амплитуды и частоты синтезированного сигнала, что предъявляет жесткие требования к линейности амплитудно-частотных характеристик детекторов и модуляторов. Последний недостаток в частотном канале частично устраняется, когда при менеджменте частотой задающего генератора используется система ФАПЧ.
Сравнительно недавно в печати появились краткие сообщения о разработке в Англии новой схемы формирования SSB сигнала "синтетическим" способом с использованием техники автоматического регулирования [3], позволившей в значительной мере устранить описанные недостатки способа. Авторы (V. Petrovic и W. Gosling) назвали новый передатчик "Polar loop SSB transmitter", имея в виду, скорее всего, векторное представление SSB сигнала в полярных координатах. Структурная схема передатчика показана на рис: 1.

НОВЫЙ СПОСОБ ФОРМИРОВАНИЯ SSB СИГНАЛА
ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ

Puc.1
Его высокочастотная часть проста - содержит задающий генератор G1, настроенный на рабочую частоту f,, и усилитель мощности А1, связанный с антенной W1. Низкочастотная часть аппарата сложнее. В нее входит формирователь вспомогательного SSB сигнала U1, преобразующий звуковой сигнал с микрофона В1 в однополосный на какой-либо сравнительно низкой частоте, например 500 кГц. Формирователь U1 может содержать микрофонный усилитель А5, балансный модулятор U8. опорный генератор G3 на частоту 500 кГц и электромеханический фильтр Z2.
Сформированный низкочастотный SSB сигнал Ui подается на ограничитель U2 и синхронный детектор U3, на выходе которого выделяется напряжение. пропорциональное амплитуде SSB сигнала а1. Таким образом, элементы U2 и U3 выполняют функции амплитудного детектора. Разумеется, можно было бы применить и обычный детектор огибающей, но его линейность хуже, а ограничитель все равно нужен для дальнейших преобразований сигнала.
Теперь посмотрим на структурную схему передатчика "с иной стороны", с выхода. Часть выходного ВЧ сигнала через аттенюатор А4 поступает на преобразователь частоты U7, гетеродином которого служит синтезатор частот G2 или какой-либо иной высокостабильный генератор. Его частоту f, устанавливают равной разности или сумме рабочей частоты f1 и вспомогательной низкой частоты f3. В этом случае после преобразования выделится сигнал с частотой, равной частоте сформированного низкочастотного сигнала (в нашем примере 500 кГц). Предположим, что рабочая частота f1 равна 28 500 кГц. тогда частота синтезатора G2 должна быть 28 000 или 29 000 кГц. Преобразованный сигнал подается на ограничитель U5 и синхронный детектор U6. похожие узлам U2 и U3. На выходе синхронного детектора U6 выделяется напряжение. пропорциональное амплитуде излучаемого сигнала а2. Оба напряжения, а1 и a2 поступают на дифференциальный мод модуляционного усилителя постоянного тока A3 и управляют амплитудой ВЧ сигнала в усилителе мощности А1. Таким образом, образуется замкнутая петля слежения за амплитудой излучаемого сигнала.
На работу петли мало влияют коэффициенты передачи синхронных детекторов и других звеньев. Более того, чем больше коэффициент усиления в петле (определяемый в основном усилителем A3), тем точнее отслеживается амплитуда выходного сигнала при условии, что фазовые сдвиги сигнала регулирования в петле невелики (иначе петля может самовозбудиться). Необходимая пиковая выходная мощность передатчика устанавливается аттенюатором А4.
Рассмотрим работу канала слежения за частотой. Ограниченный SSB сигнал Из и преобразованный по частоте и также ограниченный выходной сигнал U4 поступает на фазовый детектор U4, где сравниваются между собой по фазе. Выходное напряжение фазового детектора. пропорциональное разности фаз, через фильтр нижних частот Z1 и усилитель постоянного тока А2 воздействует на варикап, включенный в контур задающего генератора передатчика G1. Узлы U4, Z1. А2 и варикап входят, таким образом, в петлю ФАПЧ, устанавливающую точное равенство частот вспомогательного SSB сигнала ч преобразованного выходного. Необходимо только, чтобы при включении передатчика частота задающего генератора попала в поносу захвата петли ФАПЧ (которая может составлять десятки и сотни килогерц), дальнейшее слежение происходит автоматически. В паузах речевого сигнала система подстраивается под частоту подавленной несущей f3, остаток которой имеется на выходе вспомогательного формирователя SSB сигнала U1. Выходной каскад передатчика в паузах закрыт благодаря работе петли слежения за амплитудой.
Суть работы всей системы, таким образом, сводится к следующему: формируется вспомогательный SSB сигнал на частоте f3 (узлом U1), излучаемый сигнал преобразуется в эту же частоту (элементы U7, G2), и две петли автоматического слежения за амплитудой и частотой устанавливают равенство амплитуд и фаз вспомогательного и излучаемого SSB сигналов. В результате излучается SSB сигнал, в точности соответствующий вспомогательному, но на существенно более высокой частоте f1. Работу системы можно пояснить и векторной диаграммой в полярных координатах г и ф, показанной на рис. 2.


НОВЫЙ СПОСОБ ФОРМИРОВАНИЯ SSB СИГНАЛА
ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ

Puc.2
Вектор U1 изображает вспомогательный SSB сигнал. Длина а, этого вектора соответствует амплитуде, а угол ф1 - фазе. Преобразованный по частоте выходной сигнал передатчика изображен как вектор U2. Система регулирования амплитуды стремится установить равенство длин векторов U1 и U2, а система ФАПЧ - равенство их фаз. При идеальном отслеживании векторы совпадают, и преобразованный сигнал в точности соответствует сформированному.
Практически постоянно имеется некоторая ошибка слежения, которая уменьшается при повышении усиления в петлях регулирования.
При реализации ВЧ часть передатчика получается исключительно простой. Выходной каскад может работать в режиме класса С с высоким КПД. Не требуется и высокой линейности амплитудного и частотного модуляторов, поскольку глубокая отрицательная обратная связь в петлях регулирования линеаризует систему и существенно уменьшает нелинейные искажения. К стабильности задающего генератора G1 также не предъявляется особых требований, поскольку его частоту стабилизируют системой ФАПЧ. Передатчик перестраивается по частоте синтезатором G2. Изобретатели нового "синтетического" способа сообщают, что ВЧ часть передатчика совершенно нечувствительна к пульсациям питающих напряжений, изменениям номиналов элементов и т. д. Главным же достоинством передатчика является очень высокая чистота выходного спектра, что в условиях современного эфира особенно важно. Побочных частот (кроме гармоник) передатчик не излучает. При испытании двухтональным сигналом уровень побочных составляющих оказался ниже -50 дБ. а в обычных фильтровых SSB передатчиках он редко опускается ниже -30...-35дБ. Передатчик проверяли на частоте 99.5 МГц при излучаемой мощности 13...20 Вт.
Представляется, что новый способ формирования SSB заинтересует радиолюбителей высокими качественными параметрами. Просматривается и вероятность "трансиверизации" описанного передатчика. Например, элементы U7 и G2 (см. рис.1) могут служить преобразователем частоты приемной части трансивера. К выходу преобразователя U7 при приеме подключается обычный тракт усиления ПЧ н SSB детектор, а опорный сигнал для последнего можно взять из блока формирования вспомогательного SSB сигнала U1. Можно осуществить и двойное преобразование принимаемой частоты f1 а частоту f3, используя первый кварцевый и второй перестраиваемый гетеродины, как часто делают в радиолюбительских приемниках и трансиверах. Вся система формирования SSB сигнала будет работать в этом случае на второй ПЧ приемника.
В. ПОЛЯКОВ (RA3AAE) г. Москва
ЛИТЕРАТУРА
1. Бунимович С,. Яйленко Л. Техника любительской однополосной радиосвязи. М.: ДОСААФ СССР. 1970,
2. Верзунов М. В. Однополосная модуляция в радиосвязи.-- М.: Воениздат, 1972.
3. Hawker P. Polar loop SSB transmitter". Radio Communication; 1979. Sept.. p. 828 - 829.
(Радио 4-84)






Похожие схемы:

СИНТЕЗАТОР РЕЧИ
СИНТЕЗАТОР РЕЧИ
Цифровая техника СИНТЕЗАТОР РЕЧИ М.ЛОШКАРЕВ, 658045, Алтайский край, Первомайский р-н, п.Сибирский, а/я32. Устройство говорящее (синтезатор речи) служит для воспроизведения человеческой речи в различных радиоэлектронных и бытовых устройствах (телефонные автоответчики,дверные замки, различные игрушки). В предлагаемом устройстве, в отличии от известных, применен новый метод формирования сигналов. Устройство состоит из генератора тактовых импульсов, выход которого подключен ко входу устройства формирования


Простой и быстрый способ расчета источников питания
Простой и быстрый способ расчета источников питания
Электропитание Простой и быстрый способ расчета источников питания О.J. Cogburn. Техасский сельскохозяйственно-механический университет (Коллидж-Стейшн, шт. Техас) Предлагаемый тут прямой способ расчета позволяет быстро и легко определять параметры простого источника питания постоянного тока и далее проверять готовую схему посредством только одного осциллографа. Поскольку расчетные формулы основаны на использовании величин, измеряемых по осциллограмме выходного напряжения схемы во пора ее испытания, нет


НАМОТКА ТОРОИДАЛЬНЫХ КАТУШЕК
НАМОТКА ТОРОИДАЛЬНЫХ КАТУШЕК
Радиолюбительская технология НАМОТКА ТОРОИДАЛЬНЫХ КАТУШЕК Намотка провода на тороидальные сердечники требует специальных приспособлении и довольно трудоемка. Предлагаемый способ немаловажно упрощает и облегчает изготовление катушек индуктивностеи на ферритовых тороидальных сердечниках. Прежде всего следует изготовить бумажное кольцо из плотной бумаги, пропитанной парафином. Для этого вырезают полоску бумаги длиной 200 мм и шириной 2-2,5 мм и складывают пополам по всей длине для получения желобка. Затем эту


ВАРИАНТ ВКЛЮЧЕНИЯ ЭМФ
ВАРИАНТ ВКЛЮЧЕНИЯ ЭМФ
Узлы радиолюбительской техники ВАРИАНТ ВКЛЮЧЕНИЯ ЭМФ UB5CE В блоках формирования однополосного сигнала нагрузкой кольцевого балансного модулятора нередко служит электромеханический фильтр (ЭМФ). В этом случае при смене боковой полосы из-за изменения частоты опорного генератора подавление несущей частоты, как правило, ухудшается. Вариант включения ЭМФ в балансный модулятор, предложенный UB5CE, свободен от указанного недостатка. Катушка L1 должна иметь индуктивность приблизительно 1,8 мГ. Ее можно


ЗАЖИГАЛКА ДЛЯ ГАЗА
ЗАЖИГАЛКА ДЛЯ ГАЗА
Бытовая электроника ЗАЖИГАЛКА ДЛЯ ГАЗА Новый вариант зажигалки для газа [ 1 ], как показала практика, имеет лучшие характеристики. Ее схема менее критична к подбору элементов, в частности, диода VD3. Частота генерации, определяемая конденсатором С2, снижена. Исключена нагревающаяся даталь — резистор R1. Диод VD3 можно сменить на Д220, Д223. Трансформатор Т1 имеет те же намоточные данные, что и в предыдущей конструкции, но есть и отличие: в отверстие катушки нужно вделать 10—20 шт. пластин


Усилитель мощности, выполненный по мостовой схеме.
Усилитель мощности, выполненный по мостовой схеме.
AUDIO техника Усилитель мощности, выполненный по мостовой схеме. Он имеет выходную мощность 60 Вт при однополярном источнике питания напряжением +40 В. Получение большой выходной мощности связано с рядом трудностей, одной из которых является ограничение напряжения источника питания, вызванного тем, что ассортимент высоковольтных мощных транзисторов пока ещё довольно невелик. Одним из способов увеличения выходной мощности является последовательно-параллельное включение однотипных транзисторов, но это вызывает





Оставить комментарий