Электрические схемы бесплатно. ПЛАВНОЕ ЗАЖИГАНИЕ ЛАМПЫ НАКАЛИВАНИЯ

 






ПЛАВНОЕ ЗАЖИГАНИЕ ЛАМПЫ НАКАЛИВАНИЯ

Категория: Бытовая электроника

Бытовая электроника ПЛАВНОЕ ЗАЖИГАНИЕ ЛАМПЫ НАКАЛИВАНИЯ
Устройство обеспечивает защиту осветительной лампы от бросков тока в момент включения и плавный разогрев ее нити накала, а также регулировку максимальной мощности нагрузки. Преимущество его перед некоторыми подобными, например, опубликованными в [1, 2] - простота, сочетающаяся с довольно высокой надежностью.
За основу (см. схему) взят способ фазоимпульсного менеджмента тринистором, описанный в [З]. Принцип действия такого устройства хорошо известен читателям "Радио", а потому рассмотрим подробно лишь работу ещё вводимой цепи автоматического менеджмента мощностью нагрузки, состоящую из диода VD4, конденсатора С1 и резисторов R2, R3.

Схема ПЛАВНОЕ ЗАЖИГАНИЕ ЛАМПЫ НАКАЛИВАНИЯ
ЧТОБЫ УВЕЛИЧИТЬ (УМЕНЬШИТЬ) СХЕМУ, НАЖМИТЕ НА КАРТИНКУ


Сразу после включения в сеть конденсатор С1 начинает заряжаться импульсами тока, текущего через резистор R2, диод VD4 и резистор R3. Пиковое роль напряжения в точке А пока недостаточно для открывания однопереходного транзистора VT1, поэтому он закрыт, закрыт, безусловно, и тринистор VS1. В это час ток через нагрузку EL1 не протекает. По мере зарядки конденсатора С1 роль импульсного напряжения в точке А увеличивается. Когда она достигает порога открывания транзистора, конденсатор С1 начинает разряжаться через его переход эмиттер-база, в результате чего на управляющий электрод тринистора поступают открывающие его короткие импульсы.
Мощность, рассеиваемая в нагрузке, определяется фазовым сдвигом между управляющим импульсом и началом периода анодного напряжения тринистора, а также частотой следования управляющих импульсов, поскольку в начале процесса один импульс формируется за несколько периодов сетевого напряжения. Эти два параметра, определяющие функционирование тринистора, зависят от скорости зарядки конденсатора С2, т. е. от пикового напряжения в точке А и сопротивления введенной части переменного резистора R4. По мере зарядки конденсатора С1 (спустя 1...2 с) средний ток, протекающий через диод VD4, уменьшается настолько, что в дальнейшем эта цепь не оказывает заметного влияния на работу устройства. Максимальная мощность, поступающая в нагрузку, определяется суммарным сопротивлением резисторов R2 и R4 и может составлять примерно 5...90 процент(ов) от номинальной мощности нагрузки. Как показывает практика, такого диапазона регулировки мощности для ламп накаливания полностью довольно.
Резистор R7 предназначен для разрядки конденсатора С1 после отключения нагрузки от сети. Устройство целесообразно дополнить герконом SF1, ускоряющим разрядку этого конденсатора, а управляющий его контактами магнит механически связать с выключателем SA1. Резистор R8 сдерживает ток через геркон.
Устройство произвольной конструкции можно собрать в корпусе сравнительно небольших размеров. При мощности нагрузки более 100 Вт тринистор следует установить на теплоотвод, а выпрямительный мост VD1 заместить более мощным, например, собранным на четырех диодах Д245.
Тринистор КУ201Л заменим на КУ201К, М, КУ202Л-Н. Диод VD4 - любой из серий КД522, КД521, КД503. Все постоянные резисторы - МЛТ, переменный резистор R4 -СПЗ-4а. Конденсатор С1 - оксидный К50-6, С2 - любой малогабаритный.
В связи с тем, что устройство имеет непосредственный контакт с сетью, вал переменного резистора R4 допжен быть снабжен ручкой из изоляционного материала.
Безошибочно собранное устройство налаживания не требует.
ЛИТЕРАТУРА
1. Бжевский Л. Светорегупятор с выдержкой времени. - Радио, 1989, № 10, с. 76.
2. Леонтъев А., Лукаш С. Регулятор напряжения с фазоимпульсным менеджментом. - Радио, 1992, Ма
9. с. 43. 44.
3. Фишер Э., Гетпанд X. Б. Электроника - от теории к практике. - М.: Энергия, 1980, с. 71,72.
Д. ПАНКРАТЬЕВ, а. Ташкент
(РАДИО 9-97)






Похожие схемы:

Об использовании ламп дневного света с перегоревшими нитями
Об использовании ламп дневного света с перегоревшими нитями
В радиолюбительских журналах часто публиковали различные схемы использования ламп дневного света с перегоревшими нитями накала. Автор опробовал все такие схемы на практике. Используя опыт этих испытаний и ряд доработок, автор остановился на схеме, показанной на рисунке. Дроссель Др1 нужно использовать только соответствующей лампе дневного света мощности. Если под рукой нет такого дросселя, предлагаю следующий вариант: для лампы 20 (18) Вт соединить последовательно два 40-ваттных дросселя; для лампы 40 (30) Вт - последовательно


Бесконтактный индикатор фазы
Бесконтактный индикатор фазы
Если неоновую лампу взять за стеклянный корпус и коснуться одним из ее выводов фазного провода электросети, лампа начинает светиться. Ток, вызывающий свечение, протекает через электрическую емкость между пальцами и внутренними электродами лампы. Этот результат можно использовать для изготовления простейшего индикатора фазного провода. К одному из выводов лампы припаивают металлический штырь. Следует остановить свой выбор тот вывод, при использовании которого получается наиболее яркое свечение. На цоколь лампы надевают слегка растянутую


Сигнализатор уровня напряжения в сети
Сигнализатор уровня напряжения в сети
Предлагаю простейший сигнализатор выхода напряжения в сети за установленные пределы. Его схема показана на рисунке. Резистор R2 подбирают таким, чтобы неоновая лампа HL1 была включена только при напряжении в сети более 190 В. А подборкой резистора R4 добиваются включения лампы HL2 лишь при напряжении, превышающем 240 В. Таким образом, при напряжении менее 190 В лампы выключены, в интервале 190...240 В светит одна из них, а при ещё большем напряжении — обе. В приборе можно применить неоновые лампы не только указанного на схеме


Плавное включение накала кинескопа
Плавное включение накала кинескопа
Телевидение Плавное включение накала кинескопа Схема, показанная на рисунке, используется для кинескопов с Uн=6,3 В и током накала Iн=0,3 А, т.е. для большинства черно-белых кинескопов. ИМС DA1 крепится к радиатору площадью ~20 см2 (можно использовать свободную площадь платы из фольгированного стеклотекстолита). Подстроенным резистором R1 выставляют необходимое напряжение накала (7 В), желательно при выключенном СЗ. Время нарастания напряжения определяется емкостью конденсатора СЗ.


УЗЕЛ ЗАЩИТЫ РАДИОАППАРАТУРЫ
УЗЕЛ ЗАЩИТЫ РАДИОАППАРАТУРЫ
Электропитание УЗЕЛ ЗАЩИТЫ РАДИОАППАРАТУРЫ Предлагаемая схема обезопасит радиоаппаратуру например радиостанцию или магнитолу, от выхода и: строя при случайной переполюсовке или повышении напряжения питания (то нередко бывает при неисправности генератора в автомобиле). Схема работает следующим образом. При правильной полярности и номинальном напряжении диод VD1 и ти-ристор VS1 закрыты, и ток через предохранитель FU1 поступает на выход устройства. Если полярность обратная, диод VD1 открывается


Продление жизни лампы дневного света
Продление жизни лампы дневного света
В [1,2] описаны схемы, которые позволяют продлить жизнь лампы дневного света (ЛДС). Они, безусловно, заслуживают внимания, привлекают своей простотой, доступностью и могут быть рекомендованы для повторения. Но при повторении этих схем надобно иметь в виду, что нить накаливания ЛДС, которая остается "живой", работает с перегрузкой, поскольку перегоревшая нить накаливания шунтирована "проволочной перемычкой". Такой форсированный режим работы лампы из-за уменьшения сопротивления цепи нитей накаливания в два раза приводит к ее быстрому износу, и





Оставить комментарий